Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.03.07.583823

ABSTRACT

The recent emergence of a SARS-CoV-2 saltation variant, BA.2.87.1, which features 65 spike mutations relative to BA.2, has attracted worldwide attention. In this study, we elucidate the antigenic characteristics and immune evasion capability of BA.2.87.1. Our findings reveal that BA.2.87.1 is more susceptible to XBB-induced humoral immunity compared to JN.1. Notably, BA.2.87.1 lacks critical escaping mutations in the receptor binding domain (RBD) thus allowing various classes of neutralizing antibodies (NAbs) that were escaped by XBB or BA.2.86 subvariants to neutralize BA.2.87.1, although the deletions in the N-terminal domain (NTD), specifically 15-23del and 136-146del, compensate for the resistance to humoral immunity. Interestingly, several neutralizing antibody drugs have been found to restore their efficacy against BA.2.87.1, including SA58, REGN-10933 and COV2-2196. Hence, our results suggest that BA.2.87.1 may not become widespread until it acquires multiple RBD mutations to achieve sufficient immune evasion comparable to that of JN.1.

2.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.01.29.577677

ABSTRACT

Selective pressures have given rise to a number of SARS-CoV-2 variants during the prolonged course of the COVID-19 pandemic. Recently evolved variants differ from ancestors in additional glycosylation within the spike protein receptor-binding domain (RBD). Details of how the acquisition of glycosylation impacts viral fitness and human adaptation are not clearly understood. Here, we dissected the role of N354-linked glycosylation, acquired by BA.2.86 sub-lineages, as a RBD conformational control element in attenuating viral infectivity. The reduced infectivity could be recovered in the presence of heparin sulfate, which targets the N354 pocket to ease restrictions of conformational transition resulting in a RBD-up state, thereby conferring an adjustable infectivity. Furthermore, N354 glycosylation improved spike cleavage and cell-cell fusion, and in particular escaped one subset of ADCC antibodies. Together with reduced immunogenicity in hybrid immunity background, these indicate a single spike amino acid glycosylation event provides selective advantage in humans through multiple mechanisms.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19 , Epilepsy, Post-Traumatic
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.11.13.566860

ABSTRACT

While the BA.2.86 variant demonstrated significant antigenic drift and enhanced ACE2 binding affinity, its ability to evade humoral immunity was relatively moderate compared to dominant strains like EG.5 and HK.3. However, the emergence of a new subvariant, JN.1 (BA.2.86.1.1), which possesses an additional spike mutation, L455S, compared to BA.2.86, showed a markedly increased prevalence in Europe and North America, especially in France. Here, we found that L455S of JN.1 significantly enhances immune evasion capabilities at the expense of reduced ACE2 binding affinity. This mutation enables JN.1 to effectively evade Class 1 neutralizing antibodies, offsetting BA.2.86s susceptibility and thus allowing it to outcompete both its precursor BA.2.86 and the prevailing variants HV.1 (XBB.1.5+L452R+F456L) and JD.1.1 (XBB.1.5+L455F+F456L+A475V) in terms of humoral immune evasion. The rapid evolution from BA.2.86 to JN.1, similar to the earlier transition from BA.2.75 to CH.1.1, highlights the importance of closely monitoring strains with high ACE2 binding affinity and distinct antigenicity, despite their temporarily unremarkable immune evasion capabilities. Such strains could survive and transmit at low levels, since their large antigenic distance to dominant strains allow them to target distinct populations and accumulate immune-evasive mutations rapidly, often at the cost of receptor binding affinity.

4.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2887287.v1

ABSTRACT

The continuous emergence of highly immune evasive SARS-CoV-2 variants, like XBB.1.5 and XBB.1.16, highlights the need to update COVID-19 vaccine compositions. However, immune imprinting induced by wildtype (WT)-based vaccination would compromise the antibody response to Omicron-based boosters. Vaccination strategies that can counter immune imprinting are critically needed. In this study, we investigated the degree and dynamics of immune imprinting in mouse models and human cohorts, especially focusing on the role of repeated Omicron stimulation. Our results show that in mice, the efficacy of single Omicron-boosting is heavily limited by immune imprinting, especially when using variants antigenically distinct from WT, like XBB, while the concerning situation could be largely mitigated by a second Omicron booster. Similarly, in humans, we found that repeated Omicron infections could also alleviate WT-vaccination-induced immune imprinting and generate high neutralizing titers against XBB.1.5 and XBB.1.16 in both plasma and nasal mucosa. By isolating 781 RBD-targeting mAbs from repeated Omicron infection cohorts, we revealed that double Omicron exposure alleviates immune imprinting by generating a large proportion of highly matured and potent Omicron-specific antibodies. Importantly, epitope characterization using deep mutational scanning (DMS) showed that these Omicron-specific antibodies target distinct RBD epitopes compared to WT-induced antibodies, and the bias towards non-neutralizing epitopes observed in single Omicron exposures due to imprinting was largely restored after repeated Omicron stimulation, together leading to a substantial neutralizing epitope shift. Based on the DMS profiles, we identified evolution hotspots of XBB.1.5 RBD and demonstrated the combinations of these mutations could further boost XBB.1.5’s immune-evasion capability while maintaining high ACE2 binding affinity. Our findings suggest the WT component should be abandoned when updating COVID-19 vaccine antigen compositions to XBB lineages, and those who haven't been exposed to Omicron yet should receive two updated vaccine boosters.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
5.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.04.17.536908

ABSTRACT

The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal IgA response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal sIgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies targeting the receptor-binding domain of the spike protein (01A05, rmAb23, DXP-604 and XG014). Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2 and BA.4/5 with a 50-150-fold increase in potency, reaching the level of the most potent monoclonal antibodies described till date. In hACE2 transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Conversion of IgA and dimerization further enhanced or restored the neutralizing ability against the emerging Omicron sub-variants (DXP-604 for BQ.1, BQ.1.1 and BA2.75; 01A05 for BA2.75, BA.2.75.2 and XBB.1). Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by subvariants and, potentially, future VOCs.


Subject(s)
Breakthrough Pain
6.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.02.02.23285205

ABSTRACT

The emergence of highly immune-escape Omicron variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), such as BQ and XBB, has led to concerns about the efficacy of vaccines. Using lentivirus-based pseudovirus neutralizing assay, we showed that heterologous vaccination involving parental mRNA vaccine as a booster or second booster in individuals that received two or three doses of inactivated vaccines strongly augments the neutralizing activity against emerging Omicron subvariants, including BF.7, BQ.1.1, and XBB.1, by 4.3- to 219-folds. Therefore, a heterologous boosting strategy with mRNA-based vaccines should be considered in populations where inactivated vaccines were primarily used.


Subject(s)
Coronavirus Infections
7.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.06.527236

ABSTRACT

The evolution of SARS-CoV-2 is characterized by the emergence of new variants with a sheer number of mutations compared to their predecessors, which conferred resistance to pre-existing antibodies and/or increased transmissibility. The recently emerged Omicron subvariants also exhibit a strong tendency for immune evasion, suggesting adaptive evolution. However, previous studies have been limited to specific lineages or subsets of mutations, the overall evolutionary trajectory of SARS-CoV-2 and the underlying driving forces are still not fully understood. In this study, we analyzed the mutations present in all open-access SARS-CoV-2 genomes (until November 2022) and correlated the mutation's incidence and fitness change with its impact on immune evasion and ACE2 binding affinity. Our results showed that the Omicron lineage had an accelerated mutation rate in the RBD region, while the mutation incidence in other genomic regions did not change dramatically over time. Moreover, mutations in the RBD region (but not in any other genomic regions) exhibited a lineage-specific pattern and tended to become more aggregated over time, and the mutation incidence was positively correlated with the strength of antibody pressure on the specific position. Additionally, the incidence of mutation was also positively correlated with changes in ACE2 binding affinity, but with a lower correlation coefficient than with immune evasion. In contrast, the mutation's effect on fitness was more closely correlated with changes in ACE2 binding affinity than immune evasion. In conclusion, our results suggest that immune evasion and ACE2 binding affinity play significant and diverse roles in the evolution of SARS-CoV-2.


Subject(s)
Seizures , Severe Acute Respiratory Syndrome
8.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2554999.v1

ABSTRACT

The evolution of SARS-CoV-2 is characterized by the emergence of new variants with a sheer number of mutations compared to their predecessors, which conferred resistance to pre-existing antibodies and/or increased transmissibility. The recently emerged Omicron subvariants also exhibit a strong tendency for immune evasion, suggesting adaptive evolution. However, previous studies have been limited to specific lineages or subsets of mutations, the overall evolutionary trajectory of SARS-CoV-2 and the underlying driving forces are still not fully understood. In this study, we analyzed the mutations present in all open-access SARS-CoV-2 genomes (until November 2022) and correlated the mutation’s incidence and fitness change with its impact on immune evasion and ACE2 binding affinity. Our results showed that the Omicron lineage had an accelerated mutation rate in the RBD region, while the mutation incidence in other genomic regions did not change dramatically over time. Moreover, mutations in the RBD region (but not in any other genomic regions) exhibited a lineage-specific pattern and tended to become more aggregated over time, and the mutation incidence was positively correlated with the strength of antibody pressure on the specific position. Additionally, the incidence of mutation was also positively correlated with changes in ACE2 binding affinity, but with a lower correlation coefficient than with immune evasion. In contrast, the mutation’s effect on fitness was more closely correlated with changes in ACE2 binding affinity than immune evasion. In conclusion, our results suggest that immune evasion and ACE2 binding affinity play significant and diverse roles in the evolution of SARS-CoV-2.


Subject(s)
Seizures , Severe Acute Respiratory Syndrome
9.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.12.28.22283666

ABSTRACT

BACKGROUND This study has assessed a new Anti-COVID-19 Monoclonal Antibody Nasal Spray (SA58) for post-exposure prophylaxis (PEP) against symptomatic coronavirus disease 2019 (COVID-19). METHODS We conducted an efficacy study in adults aged 18 years and older within three days of exposure to a SARS-CoV-2 infected individual. Recruited participants were randomized in a ratio of 3:1 to receive SA58 or placebo. Primary endpoints were laboratory-confirmed symptomatic COVID-19 within study period. FINDINGS A total of 1,222 participants were randomized and dosed (SA58, n=901; placebo, n=321). Median of follow-up was 2.25 days and 2.79 days for SA58 and placebo, respectively. Adverse events occurred in 221 of 901 (25%) and 72 of 321 (22%) participants with SA58 and placebo, respectively, with no significant difference (P=0.49). All adverse events were mild in severity. Laboratory-confirmed symptomatic COVID-19 developed in 7 of 824 participants (0.22 per 100 person-days) in the SA58 group vs 14 of 299 (1.17 per 100 person-days) in the placebo group, resulting in an estimated efficacy of 80.82% (95%CI 52.41%-92.27%). There were 32 SARS-CoV-2 RT-PCR positives (1.04 per 100 person-days) in the SA58 group vs 32 (2.80 per 100 person-days) in the placebo group, resulting in an estimated efficacy of 61.83% (95%CI 37.50%-76.69%). A total of 21 RT-PCR positive samples were sequenced. 21 lineages of SARS-CoV-2 variants were identified, and all were the Omicron variant BF.7. INTERPRETATION SA58 Nasal Spray showed favorable efficacy and safety in preventing SARS-CoV-2 infection or symptomatic COVID-19 in healthy adult workers who had exposure to SARS-CoV-2 within 72 hours.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
10.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.15.507787

ABSTRACT

Continuous evolution of Omicron has led to numerous subvariants that exhibits growth advantage over BA.5. Such rapid and simultaneous emergence of variants with enormous advantages is unprecedented. Despite their rapidly divergent evolutionary courses, mutations on their receptor-binding domain (RBD) converge on several hotspots, including R346, R356, K444, L452, N460K and F486. The driving force and destination of such convergent evolution and its impact on humoral immunity established by vaccination and infection remain unclear. Here we demonstrate that these convergent mutations can cause striking evasion of convalescent plasma, including those from BA.5 breakthrough infection, and existing antibody drugs, including Evusheld and Bebtelovimab. BA.2.75.2 is the most evasive strain tested, and only BQ.1.1 could compare. To clarify the origin of the convergent evolution, we determined the escape mutation profiles and neutralization activity of monoclonal antibodies (mAbs) isolated from convalescents of BA.2 and BA.5 breakthrough infection. Importantly, due to humoral immune imprinting, BA.2 and especially BA.5 breakthrough infection caused significant reductions of neutralizing antibody epitope diversity and increased proportion of non-neutralizing mAbs, which in turn concentrated humoral immune pressure and promoted the convergent RBD evolution. Additionally, the precise convergent RBD mutations and evolution trends of BA.2.75/BA.5 subvariants could be inferred by integrating the neutralization-weighted DMS profiles of mAbs from various immune histories (3051 mAbs in total). Moreover, we demonstrated that as few as five additional convergent mutations based on BA.5 or BA.2.75 could completely evade most plasma samples, including those from BA.5 breakthrough infections, while remaining sufficient hACE2-binding affinity. These results suggest herd immunity established by natural infection could hardly stop RBD evolution, and vaccine boosters using BA.5 may not provide sufficiently broad protection. Broad-spectrum SARS-CoV-2 vaccines and NAb drugs development should be in high priority and the constructed convergent mutants could serve to examine their effectiveness in advance.


Subject(s)
Breakthrough Pain
11.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.09.503384

ABSTRACT

Multiple BA.4 and BA.5 subvariants with R346 mutations on the spike glycoprotein have been identified in various countries, such as BA.4.6/BF.7 harboring R346T, BA.4.7 harboring R346S, and BA.5.9 harboring R346I. These subvariants, especially BA.4.6, exhibit substantial growth advantages compared to BA.4/BA.5. In this study, we showed that BA.4.6, BA.4.7, and BA.5.9 displayed higher humoral immunity evasion capability than BA.4/BA.5, causing 1.5 to 1.9-fold decrease in NT50 of the plasma from BA.1 and BA.2 breakthrough-infection convalescents compared to BA.4/BA.5. Importantly, plasma from BA.5 breakthrough-infection convalescents also exhibits significant neutralization activity decrease against BA.4.6, BA.4.7, and BA.5.9 than BA.4/BA.5, showing on average 2.4 to 2.6-fold decrease in NT50. For neutralizing antibody drugs, Bebtelovimab remains potent, while Evusheld is completely escaped by these subvariants. Together, our results rationalize the prevailing advantages of the R346 mutated BA.4/BA.5 subvariants and urge the close monitoring of these mutants, which could lead to the next wave of the pandemic.


Subject(s)
Breakthrough Pain
12.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.18.500332

ABSTRACT

The Omicron subvariants BA.2.75 is rapidly raising in India. BA.2.75 also shows a local growth advantage compared to BA.2.38 and BA.4/BA.5. Its immune evasion capability and receptor binding affinity is unclear and requires investigation. Here, we show that BA.2.75 is more neutralization evasive than BA.2.12.1 against the plasma from post-vaccination BA.2 infection, but less compared to BA.4/BA.5. However, as shown in a small sample of plasma from post-vaccination Delta infection, BA.2.75 seems to be more immune evasive than BA.4/BA.5 in Delta-stimulated immune background, which may explain BA. 2.75's growth advantage over BA.4/BA.5 in India. The additional N460K, G446S, D339H and R493Q mutations carried by BA.2.75 allows it to escape BA.2-effective neutralizing antibodies of different RBD epitopes, and BA.2.75 has a distinct antibody escaping profile from BA.4/BA.5. Compared to BA.2, REGN10933 and COV2-2196 partially recovered neutralization against BA.2.75 due to R493Q reversion. However, the efficacy of their corresponding cocktail was not significantly changed, since REGN10987 and COV2-2130 showed reduced neutralizing activity due to G446S. BA.2.75 exhibits higher ACE2-binding affinity than BA.4/BA.5, which should be contributed by R493Q and N460K, according to deep mutational scanning (DMS) results. This affinity-strengthening feature is being further examined and verified, which will be updated soon.


Subject(s)
Hepatitis D
13.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1611421.v1

ABSTRACT

Recent emergence of SARS-CoV-2 Omicron sublineages BA.2.12.1, BA.2.13, BA.4 and BA.5 all contain L452 mutations and show potential higher transmissibility over BA.2. The new variants’ receptor binding and immune evasion capability require immediate investigation, especially on the role of L452 substitutions. Herein, coupled with structural comparisons, we showed that BA.2 sublineages, including BA.2.12.1 and BA.2.13, exhibit increased ACE2-binding affinities compared to BA.1; while BA.4/BA.5 shows the weakest receptor-binding activity due to F486V and R493Q reversion. Importantly, compared to BA.2, BA.2.12.1 and BA.4/BA.5 exhibit stronger neutralization escape from the plasma of 3-dose vaccinees and, most strikingly, from vaccinated BA.1 convalescents. To delineate the underlying evasion mechanism, we determined the escaping mutation profiles, epitope distribution and Omicron sub-lineage neutralization efficacy of 1640 RBD-directed neutralizing antibodies (NAbs), including 614 isolated from BA.1 convalescents. Interestingly, post-vaccination BA.1 infection mainly recalls wildtype-induced humoral memory and elicits antibodies that neutralize both wild-type and BA.1. These cross-reactive NAbs are significantly enriched on non-ACE2-competing epitopes; and surprisingly, the majority are undermined by R346 and L452 substitutions, namely R346K (BA.1.1), L452M (BA.2.13), L452Q (BA.2.12.1) and L452R (BA.4/BA.5), suggesting that R346K and L452 mutations appeared under the immune pressure of Omicron convalescents. Nevertheless, BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1 but do not respond to wild-type SARS-CoV-2, due to the high susceptibility to N501, N440, K417 and E484. However, these NAbs are largely escaped by BA.2 sublineages and BA.4/BA.5 due to D405N and F486V, exhibiting poor neutralization breadths. As for therapeutic NAbs, LY-CoV1404 (Bamlanivimab) and COV2-2130 (Cilgavimab) can still effectively neutralize BA.2.12.1 and BA.4/BA.5, while the S371F, D405N and R408S mutations carried by BA.2/BA.4/BA.5 sublineages would undermine most broad sarbecovirus NAbs. Together, our results indicate that Omicron can evolve mutations to specifically evade humoral immunity elicited by BA.1 infection. The continuous evolution of Omicron poses great challenges to SARS-CoV-2 herd immunity and suggests that BA.1-derived vaccine boosters may not be ideal for achieving broad-spectrum protection.

14.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.09.22273653

ABSTRACT

BackgroundSARS-CoV-2 Omicron variant BA.1 first emerged on the Chinese mainland in January 2022 in Tianjin and caused a large wave of infections. During mass PCR testing, a total of 430 cases infected with Omicron were recorded between January 8 and February 7, 2022, with no new infections detected for the following 16 days. Most patients had been vaccinated with SARS-CoV-2 inactivated vaccines. The disease profile associated with BA.1 infection, especially after vaccination with inactivated vaccines, is unclear. Whether BA.1 breakthrough infection after receiving inactivated vaccine could create a strong enough humoral immunity barrier against Omicron is not yet investigated. MethodsWe collected the clinical information and vaccination history of the 430 COVID-19 patients infected with Omicron BA.1. Re-positive cases and inflammation markers were monitored during the patients convalescence phase. Ordered multiclass logistic regression model was used to identify risk factors for COVID-19 disease severity. Authentic virus neutralization assays against SARS-CoV-2 wildtype, Beta and Omicron BA.1 were conducted to examine the plasma neutralizing titers induced after post-vaccination Omicron BA.1 infection, and were compared to a group of uninfected healthy individuals who were selected to have a matched vaccination profile. FindingsAmong the 430 patients, 316 (73.5%) were adults with a median age of 47 years, and 114 (26.5%) were under-age with a median age of 10 years. Female and male patients account for 55.6% and 44.4%, respectively. Most of the patients presented with mild (47.7%) to moderate diseases (50.2%), with only 2 severe cases (0.5%) and 7 (1.6%) asymptomatic infections. No death was recorded. 341 (79.3%) of the 430 patients received inactivated vaccines (54.3% BBIBP-CorV vs. 45.5% CoronaVac), 49 (11.4%) received adenovirus-vectored vaccines (Ad5-nCoV), 2 (0.5%) received recombinant protein subunit vaccines (ZF2001), and 38 (8.8%) received no vaccination. No vaccination is associated with a substantially higher ICU admission rate among Omicron BA.1 infected patients (2.0% for vaccinated patients vs. 23.7% for unvaccinated patients, P<0.001). Compared with adults, child patients presented with less severe illness (82.5% mild cases for children vs. 35.1% for adults, P<0.001), no ICU admission, fewer comorbidities (3.5% vs. 53.2%, P<0.001), and less chance of turning re-positive on nucleic acid tests (12.3% vs. 22.5%, P=0.019). For adult patients, compared with no prior vaccination, receiving 3 doses of inactivated vaccine was associated with significantly lower risk of severe disease (OR 0.227 [0.065-0.787], P=0.020), less ICU admission (OR 0.023 [0.002-0.214], P=0.001), lower re-positive rate on PCR (OR 0.240 [0.098-0.587], P=0.002), and shorter duration of hospitalization and recovery (OR 0.233 [0.091-0.596], P=0.002). At the beginning of the convalescence phase, patients who had received 3 doses of inactivated vaccine had substantially lower systemic immune-inflammation index (SII) and C-reactive protein than unvaccinated patients, while CD4+/CD8+ ratio, activated Treg cells and Th1/Th2 ratio were higher compared to their 2-dose counterparts, suggesting that receipt of 3 doses of inactivated vaccine could step up inflammation resolution after infection. Plasma neutralization titers against Omicron, Beta, and wildtype significantly increased after breakthrough infection with Omicron. Moderate symptoms were associated with higher plasma neutralization titers than mild symptoms. However, vaccination profiles prior to infection, whether 2 doses versus 3 doses or types of vaccines, had no significant effect on post-infection neutralization titer. Among recipients of 3 doses of CoronaVac, infection with Omicron BA.1 largely increased neutralization titers against Omicron BA.1 (8.7x), Beta (4.5x), and wildtype (2.2x), compared with uninfected healthy individuals who have a matched vaccination profile. InterpretationReceipt of 3-dose inactivated vaccines can substantially reduce the disease severity of Omicron BA.1 infection, with most vaccinated patients presenting with mild to moderate illness. Child patients present with less severe disease than adult patients after infection. Omicron BA.1 convalescents who had received inactivated vaccines showed significantly increased plasma neutralizing antibody titers against Omicron BA.1, Beta, and wildtype SARS-CoV-2 compared with vaccinated healthy individuals. FundingThis research is supported by Changping Laboratory (CPL-1233) and the Emergency Key Program of Guangzhou Laboratory (EKPG21-30-3), sponsored by the Ministry of Science and Technology of the Peoples Republic of China. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSPrevious studies (many of which have not been peer-reviewed) have reported inconsistent findings regarding the effect of inactivated vaccines against the Omicron variant. On Mar 6, 2022, we searched PubMed with the query "(SARS-CoV-2) AND ((Neutralisation) OR (Neutralisation)) AND ((Omicron) OR (BA.1)) AND (inactivated vaccine)", without date or language restrictions. This search identified 18 articles, of which 13 were directly relevant. Notably, the participants in many of these studies have received only one or two doses of inactivated vaccine with heterologous booster vaccination; other studies have a limited number of participants receiving inactivated vaccines. Added value of this studyTo date, this is the first study to report on the protective effect of inactivated vaccines against the severe disease caused by the Omicron variant. We examine and compare the disease profile of adults and children. Furthermore, we estimate the effect of post-vaccination omicron infection on plasma neutralization titers against Omicron and other SARS-COV-2 variants. Specifically, the disease profile of Omicron convalescents who had received two-dose primary series of inactivated vaccines with or without a booster dose prior to infection is compared with unvaccinated patients. We also analyzed the effect of infection on neutralizing activity by comparing vaccinated convalescents with vaccinated healthy individuals with matched vaccination profiles. Implications of all the available evidenceCompared with adults, child patients infected with Omicron tend to present with less severe disease and are less likely to turn re-positive on nucleic acid tests. Receipt of two-dose primary series or three doses of inactivated vaccine is a protective factor against severe disease, ICU admission, re-positive PCR and longer hospitalization. The protection afforded by a booster dose is stronger than two-dose primary series alone. Besides vaccination, infection with Omicron is also a key factor for elevated neutralizing antibody titers, enabling cross-neutralization against Omicron, wildtype (WT) and the Beta variant.


Subject(s)
Infections , Breakthrough Pain , COVID-19 , Inflammation
15.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.07.479349

ABSTRACT

Constantly emerging SARS-CoV-2 variants, such as Omicron BA.1, BA.1.1 and BA.2, pose a severe challenge to COVID-19 control. Broad-spectrum antibody therapeutics and vaccines are needed for defending against future SARS-CoV-2 variants and sarbecovirus pandemics; however, we have yet to gain a comprehensive understanding of the epitopes capable of inducing broad sarbecovirus neutralization. Here, we report the identification of 241 anti-RBD broad sarbecovirus neutralizing antibodies isolated from 44 SARS-CoV-2 vaccinated SARS convalescents. Neutralizing efficacy of these antibodies against D614G, SARS-CoV-1, Omicron variants (BA.1, BA.1.1, BA.2), RATG13 and Pangolin-GD is tested, and their binding capability to 21 sarbecovirus RBDs is measured. High-throughput yeast-display mutational screening was further applied to determine each antibody's RBD escaping mutation profile, and unsupervised epitope clustering based on escaping mutation hotspots was performed. A total of 6 clusters of broad sarbecovirus neutralizing antibodies with diverse breadth and epitopes were identified, namely Group E1 (S309, BD55-3152 site), E3 (S2H97 site), F1 (CR3022, S304 site), F2 (DH1047, BD55-3500 site), F3 (ADG-2, BD55-3372 site) and B' (S2K146 site). Members of E1, F2 and F3 demonstrate the highest neutralization potency; yet, Omicron, especially BA.2, has evolved multiple mutations (G339D, N440K, T376A, D405N, R408S) to escape antibodies of these groups. Nevertheless, broad sarbecovirus neutralizing antibodies that survived Omicron would serve as favorable therapeutic candidates. Furthermore, structural analyses of selected drug candidates propose two non-competing antibody pairing strategies, E1-F2 and E1-F3, as broad-spectrum antibody cocktails. Together, our work provides a comprehensive epitope map of broad sarbecovirus neutralizing antibodies and offers critical instructions for designing broad-spectrum vaccines.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
16.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1148985.v1

ABSTRACT

The SARS-CoV-2 B.1.1.529 variant (Omicron) contains 15 mutations on the receptor-binding domain (RBD). How Omicron would evade RBD neutralizing antibodies (NAbs) and humoral immunity requires immediate investigation. Here, we used high-throughput yeast display screening1,2 to determine the RBD escaping mutation profiles for 247 human anti-RBD NAbs identified from SARS-CoV/SARS-CoV-2 convalescents and vaccinees. Based on the results, NAbs could be unsupervised clustered into six epitope groups (A-F), which is highly concordant with knowledge-based structural classifications3-5. Strikingly, various single mutations of Omicron could impair NAbs of different epitope groups. Specifically, NAbs in Group A-D, whose epitope overlaps with ACE2-binding motif, are largely escaped by K417N, N440K, G446S, E484A, Q493K, and G496S. Group E (S309 site)6 and F (CR3022 site)7 NAbs, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but still, a subset of NAbs are escaped by G339D, S371L, and S375F. Furthermore, B.1.1.529 pseudovirus neutralization and RBD binding assay showed that single mutation tolerating NAbs could also be escaped due to multiple synergetic mutations on their epitopes. In total, over 85% of the tested NAbs are escaped by Omicron. Regarding NAb drugs, LY-CoV016/LY-CoV555 cocktail, REGN-CoV2 cocktail, AZD1061/AZD8895 cocktail, and BRII-196 were escaped by Omicron, while VIR7831 and DXP-604 still function at reduced efficacy. Together, data suggest Omicron could cause significant humoral immune evasion, while NAbs targeting the sarbecovirus conserved region remain most effective. Our results offer instructions for developing NAb drugs and vaccines against Omicron and future variants.

17.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.30.454402

ABSTRACT

The spread of the SARS-CoV-2 variants could seriously dampen the global effort to tackle the COVID-19 pandemic. Recently, we investigated the humoral antibody responses of SARS-CoV-2 convalescent patients and vaccinees towards circulating variants, and identified a panel of monoclonal antibodies (mAbs) that could efficiently neutralize the B.1.351 (Beta) variant. Here we investigate how these mAbs target the B.1.351 spike protein using cryo-electron microscopy. In particular, we show that two superpotent mAbs, BD-812 and BD-836, have non-overlapping epitopes on the receptor-binding domain (RBD) of spike. Both block the interaction between RBD and the ACE2 receptor; and importantly, both remain fully efficacious towards the B.1.617.1 (Kappa) and B.1.617.2 (Delta) variants. The BD-812/BD-836 pair could thus serve as an ideal antibody cocktail against the SARS-CoV-2 VOCs.


Subject(s)
COVID-19
18.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-437876.v1

ABSTRACT

The SARS-CoV-2 has led to a worldwide health crisis. The ACE2 has been identified as the entry receptor in a species-specific manner. Classic laboratory mice were insusceptible since the virus cannot use murine ACE2 orthologue. Animal models rely on gene modification on the virus or the host. However, these mice were restricted in limited genetic backgrounds and did not support natural infection. Here we showed two wild-type inbred lines (CAST and FEW) from Genetic Diversity mice supported authentic SARS-CoV-2 infection, and developed mild to moderate interstitial pneumonia, along with infiltrating inflammatory cells. Particularly, FEW featured age-dependent damages, while CAST charactered by pulmonary fibrosis. Genome and transcriptome comparative analysis suggested the mutated ACE2 was not responsible for SARS-CoV-2 infection in CAST and FEW, and the differential gene expressions in immune response and immune cell may be risk factors for the infection. In summary, the GD mice, derived from the multi-parental panel, provided promising murine models for exploring sophisticated pathogenesis in SARS-CoV-2.


Subject(s)
COVID-19
19.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.09.195263

ABSTRACT

Understanding the mechanism of neutralizing antibodies (NAbs) against SARS-CoV-2 is critical for effective vaccines and therapeutics development. We recently reported an exceptionally potent NAb, BD-368-2, and revealed the existence of VH3-53/VH3-66 convergent NAbs in COVID-19. Here we report the 3.5-[A] cryo-EM structure of BD-368-2s Fabs in complex with a mutation-induced prefusion-state-stabilized spike trimer. Unlike VH3-53/VH3-66 NAbs, BD-368-2 fully blocks ACE2 binding by occupying all three receptor-binding domains (RBDs) simultaneously, regardless of their "up" and "down" positions. BD-368-2 also triggers fusogenic-like structural rearrangements of the spike trimer, which could impede viral entry. Moreover, BD-368-2 completely avoids the common epitope of VH3-53/VH3-66 NAbs, evidenced by multiple crystal structures of their Fabs in tripartite complexes with RBD, suggesting a new way of pairing potent NAbs to prevent neutralization escape. Together, these results rationalize a unique epitope that leads to exceptional neutralization potency, and provide guidance for NAb therapeutics and vaccine designs against SARS-CoV-2.


Subject(s)
COVID-19
20.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.25.060947

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) pandemic poses a serious public health risk. Analyzing the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from clinical samples is crucial for the understanding of viral spread and viral evolution, as well as for vaccine development. Existing sample preparation methods for viral genome sequencing are demanding on user technique and time, and thus not ideal for time-sensitive clinical samples; these methods are also not optimized for high performance on viral genomes. We have developed MetagenomIc RNA EnRichment VirAl sequencing (MINERVA), a facile, practical, and robust approach for metagenomic and deep viral sequencing from clinical samples. This approach uses direct tagmentation of RNA/DNA hybrids using Tn5 transposase to greatly simplify the sequencing library construction process, while subsequent targeted enrichment can generate viral genomes with high sensitivity, coverage, and depth. We demonstrate the utility of MINERVA on pharyngeal, sputum and stool samples collected from COVID-19 patients, successfully obtaining both whole metatranscriptomes and complete high-depth high-coverage SARS-CoV-2 genomes from these clinical samples, with high yield and robustness. MINERVA is compatible with clinical nucleic extracts containing carrier RNA. With a shortened hands-on time from sample to virus-enriched sequencing-ready library, this rapid, versatile, and clinic-friendly approach will facilitate monitoring of viral genetic variations during outbreaks, both current and future.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL